OmniTaskAgent
A powerful multi-model task management system that can connect to various task management systems and help users choose and use the task management solution that best suits their needs.
Features
- Task Management System: Create, list, update and delete tasks, support status tracking and dependency management
- Task Decomposition and Analysis: Break down complex tasks into subtasks, support complexity assessment and PRD automatic parsing
- Python Native Implementation: Built entirely in Python, seamlessly integrated with the Python ecosystem
- Multi-Model Support: Compatible with multiple models like OpenAI, Claude, etc., not limited to specific API providers
- Editor Integration: Integrate with editors like Cursor through MCP protocol for smooth development experience
- Intelligent Workflow: Implement intelligent task management process based on LangGraph's ReAct pattern
- Multi-System Integration: Can connect to various professional task management systems like mcp-shrimp-task-manager and claude-task-master
- Cross-Scenario Application: Suitable for general development projects, vertical domain projects, and other task systems
Installation
# Install using uv (recommended)
uv pip install -e .
# Or install using pip
pip install -e .
# Install Node.js dependencies (for MCP server)
npm install
Configuration
Create a .env
file in the project root directory for configuration:
# Required: API keys (configure at least one)
OPENAI_API_KEY=your_openai_api_key_here
# Or
ANTHROPIC_API_KEY=your_anthropic_api_key_here
# Optional: Model configuration
LLM_MODEL=gpt-4o # Default model
TEMPERATURE=0.2 # Creativity parameter
MAX_TOKENS=4000 # Maximum tokens
Usage
Command Line Interface (Recommended)
The simplest way to use is through the built-in command line interface:
# Start interactive command line interface
python -m omni_task_agent.cli
Common command examples:
Create task: Optimize website performance Reduce page load time by 50%
List all tasks
Update task 1 status to completed
Decompose task 2
Analyze project complexity
Using in LangGraph Studio
LangGraph Studio is a development environment specifically designed for LLM applications, used for visualizing, interacting with, and debugging complex agent applications.
First, ensure langgraph-cli is installed (requires version 0.1.55 or higher):
# Install langgraph-cli (requires Python 3.11+)
pip install -U "langgraph-cli[inmem]"
Then start the development server in the project root directory (containing langgraph.json):
# Start local development server
langgraph dev
This will automatically open a browser and connect to the cloud-hosted Studio interface, where you can:
- Visualize your agent graph structure
- Test and run agents through the UI interface
- Modify agent state and debug
- Add breakpoints for step-by-step agent execution
- Implement human-machine collaboration processes
When modifying code during development, Studio will update automatically without needing to restart the service, facilitating rapid iteration and debugging.
For advanced features like breakpoint debugging:
# Enable debug port
langgraph dev --debug-port 5678
Editor Integration (MCP Service)
- Run the MCP server:
# Start STDIO-based MCP service
python run_mcp.py
- Configure MCP settings in your editor (like Cursor, VSCode, etc.):
{
"mcpServers": {
"task-master-agent": {
"type": "stdio",
"command": "/path/to/python",
"args": ["/path/to/run_mcp.py"],
"env": {
"OPENAI_API_KEY": "your-key-here"
}
}
}
}
Project Structure
omnitaskagent/
├── omni_task_agent/ # Main code package
│ ├── agent.py # LangGraph agent definition
│ ├── config.py # Configuration management
│ └── cli.py # Command line interface
├── examples/ # Example code
│ └── basic_usage.py # Basic usage example
├── tests/ # Test cases
├── run_mcp.py # MCP service entry
├── adapters.py # MCP adapters
├── langgraph.json # LangGraph API configuration
├── package.json # Node.js dependencies
└── pyproject.toml # Python dependencies
Reference Projects
- mcp-shrimp-task-manager - Task management system implemented in JavaScript
- AutoMCP - Tool for creating MCP services
- LangGraph - Agent building framework
- langchain-mcp-adapters - LangChain MCP adapters
License
MIT