Zero-Vector v3 - Secure MCP Server by ALMC Security 2025

Zero-Vector v3

View on GitHub

Zero-Vector MCP v3.0: Hybrid Vector-Graph AI Memory System with LangGraph Workflows

🚀 STATUS: PRODUCTION READY | Infrastructure: VALIDATED | LangGraph: OPERATIONAL

A complete AI persona memory management system combining a high-performance hybrid vector-graph database server with advanced LangGraph workflow orchestration and a Model Context Protocol (MCP) interface for sophisticated AI memory, relationship understanding, and multi-agent coordination.

🔗 GitHub Repository:https://github.com/MushroomFleet/zero-vector-MCP

🎯 System Status: OPERATIONAL

Last Infrastructure Validation: June 21, 2025
Current Version: v3.0 Production-Ready
Zero-Vector v2 Server: ✅ Active (Port 3000)
Zero-Vector v3 LangGraph: ✅ Active (Port 3001)
MCP Server: ✅ Active (Multi-server coordination)

✅ Recently Validated Infrastructure

  • LangGraph StateGraph Schema: Resolved with proper Zod integration
  • Multi-Agent Orchestration: 7-node workflow graph operational
  • Human-in-the-Loop Processing: Approval workflows functional
  • Performance Caching: Redis/PostgreSQL integration active
  • Service Coordination: v2/v3 system coordination validated
  • MCP Integration: 24 tools fully operational across both systems

📊 Confirmed Performance Metrics

  • Startup Time: 2-3 seconds for complete system initialization
  • LangGraph Compilation: <3ms for 7-node workflow graphs
  • Vector Operations: <50ms for 10,000+ vector searches
  • Workflow Execution: <2s for standard AI conversations
  • Memory Integration: <500ms for hybrid memory retrieval
  • Cache Hit Rate: 95%+ performance optimization

🎯 Overview

Zero-Vector MCP v3.0 provides a production-ready hybrid vector-graph solution with advanced LangGraph workflow capabilities for AI persona management, featuring:

  • Hybrid Vector-Graph Engine - Combines semantic search with knowledge graph traversal
  • LangGraph Workflow Orchestration - Multi-agent coordination with human-in-the-loop processing
  • AI Persona Memory with Relationships - Context-aware memory with entity extraction and graph building
  • Enhanced MCP Integration - 24 specialized tools including workflow management, graph exploration, and advanced content access
  • Multi-Step Reasoning - Sophisticated reasoning chains with approval gates and performance monitoring
  • Knowledge Graph Intelligence - Automatic entity recognition and relationship mapping
  • Production-Ready Architecture - Feature flags, comprehensive monitoring, and zero-downtime deployment

🏗️ System Architecture

graph TB
    subgraph "AI Development Environment"
        A[Cline AI Assistant] --> B[MCP Client]
    end
    
    subgraph "Zero-Vector MCP v3.0 System"
        B --> C[MCP Server v3.0]
        C --> D[Zero-Vector v2 API]
        C --> E[Zero-Vector v3 API]
        
        subgraph "Zero-Vector v2 (Original System)"
            D --> F[Hybrid Vector Store]
            D --> G[Graph Database]
            D --> H[SQLite Metadata]
        end
        
        subgraph "Zero-Vector v3 (LangGraph System)"
            E --> I[LangGraph Workflow Engine]
            I --> J[Multi-Agent Orchestration]
            I --> K[Human Approval Service]
            I --> L[Performance Cache Manager]
            I --> M[State Management]
        end
        
        subgraph "v3.0 Core Services"
            N[Hybrid Memory Manager]
            O[Entity Extractor]
            P[Graph Service]
            Q[Embedding Service]
            R[Feature Flags]
            S[Workflow Manager]
            T[Approval Service]
        end
        
        D --> N
        D --> O
        D --> P
        D --> Q
        D --> R
        E --> S
        E --> T
        
        subgraph "LangGraph Agents"
            U[Hybrid Retrieval Agent]
            V[Persona Memory Agent]
            W[Multi-Step Reasoning Agent]
            X[Human Approval Agent]
        end
        
        J --> U
        J --> V
        J --> W
        J --> X
        
        subgraph "Knowledge Graph"
            Y[Entities]
            Z[Relationships]
            AA[Graph Traversal]
        end
        
        G --> Y
        G --> Z
        G --> AA
    end
    
    subgraph "External Services"
        BB[OpenAI Embeddings]
        CC[Local Transformers]
        DD[PostgreSQL Checkpointer]
        EE[Redis Cache]
    end
    
    Q --> BB
    Q --> CC
    M --> DD
    L --> EE
    
    style A fill:#e1f5fe
    style C fill:#f3e5f5
    style F fill:#e8f5e8
    style G fill:#ffeb3b
    style I fill:#e3f2fd
    style J fill:#e8f5e8
    style N fill:#fff3e0
    style O fill:#e1f5fe
    style P fill:#e1f5fe
    style Q fill:#fff3e0
    style R fill:#f3e5f5
    style S fill:#e3f2fd
    style T fill:#ffcdd2

🚀 Quick Start

Prerequisites

  • Node.js 18.0.0 or higher
  • 4GB+ available RAM (recommended for v3.0)
  • PostgreSQL (for LangGraph checkpointing)
  • Redis (for performance caching)
  • Git

Installation

# Clone the repository
git clone https://github.com/MushroomFleet/zero-vector-3.git
cd zero-vector-3

# 1. Set up the Zero-Vector v2 server (Original System)
cd zero-vector/server
npm install
npm run setup:database
npm run generate:api-key  # Generate API key for MCP
cp env.example .env  # Add your OpenAI API key
npm start  # Runs on port 3000

# 2. Set up the Zero-Vector v3 server (LangGraph System)
cd zero-vector-3/server
npm install
cp env.example .env  # Configure environment
npm run setup:postgres # install postgre16.9 & redis first
npm run setup:infrastructure  # Setup PostgreSQL and Redis
npm start  # Runs on port 3001

# 3. Set up the MCP server (in a new terminal)
cd MCP
npm install
cp env.example .env
# Edit .env with both server URLs and API keys
npm start

Quick Test

# Test the vector database (v2)
curl http://localhost:3000/health

# Test the LangGraph system (v3)
curl http://localhost:3001/health

# Test MCP server connection (both systems)
cd MCP
npm run test:connection

📚 Component Documentation

This system consists of three main components, each with detailed documentation:

🗄️ Zero-Vector v2 Server (Original System)

Location:zero-vector/README.md

The core vector database server providing:

  • High-performance vector storage and similarity search
  • RESTful API for vector operations
  • SQLite metadata persistence
  • Authentication and security middleware
  • Real-time monitoring and health checks

🤖 Zero-Vector v3 Server (LangGraph System)

Location:zero-vector-3/README.md

The advanced LangGraph workflow server providing:

  • Multi-agent workflow orchestration
  • Human-in-the-loop approval processing
  • Advanced reasoning chains and state management
  • Performance caching and monitoring
  • PostgreSQL checkpointing and Redis caching

🔌 MCP Server v3.0

Location:MCP/README.md

The Model Context Protocol interface providing:

  • 24 specialized tools for persona, memory, graph, and workflow management
  • Multi-server coordination between v2 and v3 systems
  • LangGraph workflow management capabilities
  • Seamless integration with AI development tools
  • Comprehensive error handling and validation

✨ Key Features

LangGraph Workflow Management (NEW in v3.0)

  • Multi-Agent Orchestration: Sophisticated agent coordination with state management
  • Human-in-the-Loop Processing: Approval workflows with resume capabilities
  • Multi-Step Reasoning: Complex reasoning chains with configurable depth
  • Performance Monitoring: Real-time metrics and analytics for workflow optimization
  • Thread Continuity: Persistent conversation state across sessions
  • Workflow Caching: Performance optimization for repeated operations

Hybrid Vector-Graph Performance

  • Memory Efficiency: 2GB optimized storage supporting 349,525+ vectors
  • Hybrid Search: Sub-300ms search combining vector similarity with graph expansion
  • Entity Extraction: Automatic recognition of people, concepts, events, and relationships
  • Graph Traversal: Multi-depth relationship exploration with configurable limits
  • Scalable Architecture: Feature-flagged deployment with zero-downtime rollback

AI Persona Management with Knowledge Graphs

  • Persona Creation: Configurable AI personas with memory and graph capabilities
  • Enhanced Memory Storage: Context-aware memory with automatic entity extraction
  • Hybrid Search: Find relevant memories using vector similarity and graph relationships
  • Knowledge Graph Building: Automatic entity recognition and relationship mapping
  • Conversation History: Complete conversation tracking with entity linking
  • Memory Cleanup: Automated cleanup of old memories and orphaned graph entities

MCP Integration Tools (24 total)

  • Persona Tools (5): create_persona, list_personas, get_persona, update_persona, delete_persona
  • Memory Tools (6): add_memory, search_persona_memories, get_full_memory, add_conversation, get_conversation_history, cleanup_persona_memories
  • Graph Tools (4): explore_knowledge_graph, hybrid_memory_search, get_graph_context, get_graph_stats
  • Workflow Tools (6): execute_workflow, get_workflow_status, resume_workflow, cancel_workflow, list_active_workflows, get_workflow_metrics
  • Utility Tools (3): get_system_health, get_persona_stats, test_connection

Security & Production Features

  • API Key Authentication: Secure key generation with role-based permissions
  • Rate Limiting: Multi-tier rate limiting (global, per-key, per-endpoint)
  • Input Validation: Comprehensive request validation and sanitization
  • Structured Logging: Winston-based logging with performance metrics
  • Health Monitoring: Multiple health check endpoints for different monitoring needs
  • Multi-Server Coordination: Seamless integration between v2 and v3 systems

🎮 Use Cases

LangGraph Workflow Operations (v3.0)

Basic AI Conversation with Workflow

// Execute a basic conversation workflow
const workflowResult = await mcpClient.executeWorkflow({
  query: "Explain machine learning fundamentals for beginners",
  persona: "helpful_assistant",
  user_id: "user123",
  workflow_type: "zero_vector_conversation",
  config: {
    enable_approval: false,
    cache_enabled: true,
    confidence_threshold: 0.8,
    max_reasoning_steps: 5
  }
});

// Monitor workflow execution
const status = await mcpClient.getWorkflowStatus({
  workflow_id: workflowResult.workflow_id,
  thread_id: workflowResult.thread_id,
  include_metadata: true
});

Multi-Step Reasoning with Human Approval

// Execute complex reasoning workflow
const complexWorkflow = await mcpClient.executeWorkflow({
  query: "Compare machine learning approaches for NLP and recommend the best approach for a chatbot system, considering scalability, cost, and performance",
  persona: "technical_expert", 
  user_id: "user456",
  workflow_type: "multi_step_reasoning",
  config: {
    enable_approval: true,
    max_reasoning_steps: 10,
    confidence_threshold: 0.9,
    enable_memory_maintenance: true
  },
  thread_id: "conversation_abc123"
});

// Resume after human approval
const resumeResult = await mcpClient.resumeWorkflow({
  thread_id: "conversation_abc123",
  workflow_id: complexWorkflow.workflow_id,
  approval_result: {
    approved: true,
    feedback: "Add more details about implementation complexity",
    modifications: {
      add_implementation_details: true,
      focus_areas: ["complexity", "scalability", "cost"]
    }
  }
});

Workflow Performance Monitoring

// Get comprehensive workflow metrics
const metrics = await mcpClient.getWorkflowMetrics({
  time_range: "24h",
  workflow_type: "multi_step_reasoning",
  user_id: "user123",
  include_detailed: true
});

// List active workflows for monitoring
const activeWorkflows = await mcpClient.listActiveWorkflows({
  user_id: "user123",
  status: "running",
  workflow_type: "multi_step_reasoning",
  limit: 10
});

// Cancel workflow if needed
await mcpClient.cancelWorkflow({
  workflow_id: "workflow_xyz789",
  thread_id: "conversation_abc123",
  reason: "User requested cancellation due to changed requirements"
});

AI Assistant Memory with Knowledge Graphs (v2.0 + v3.0)

// Create a persona for an AI assistant
const persona = await mcpClient.createPersona({
  name: "Technical Assistant",
  description: "Helpful coding assistant with memory and graph knowledge",
  systemPrompt: "You are a helpful technical assistant with access to knowledge graphs...",
  maxMemorySize: 1000
});

// Add important information to memory (automatically extracts entities)
await mcpClient.addMemory({
  personaId: persona.id,
  content: "John Smith from Microsoft called about the Azure project. He mentioned working with Sarah Johnson on cloud architecture.",
  type: "conversation",
  importance: 0.8
});

// Hybrid search combining vector similarity with graph expansion
const hybridResults = await mcpClient.hybridMemorySearch({
  personaId: persona.id,
  query: "cloud architecture project",
  limit: 5,
  useGraphExpansion: true,
  graphDepth: 2,
  threshold: 0.7
});

// Use workflow to process complex queries with memory integration
const workflowWithMemory = await mcpClient.executeWorkflow({
  query: "Based on my previous conversations about Azure, what are the key architectural considerations for our project?",
  persona: persona.id,
  user_id: "user123",
  workflow_type: "zero_vector_conversation",
  config: {
    use_memory_integration: true,
    enable_graph_expansion: true,
    memory_context_depth: 3
  }
});

Enhanced Memory Context Discovery

// Get comprehensive context for specific entities
const context = await mcpClient.getGraphContext({
  personaId: persona.id,
  entityIds: ["entity-john-smith-uuid", "entity-microsoft-uuid"],
  includeRelationships: true,
  maxDepth: 2
});

// Search with configurable content display
const searchWithFullContent = await mcpClient.searchPersonaMemories({
  personaId: persona.id,
  query: "white hat tales",
  limit: 5,
  show_full_content: true,  // No truncation
  threshold: 0.3
});

Integration with Cline (v3.0)

{
  "mcpServers": {
    "zero-vector-v3": {
      "command": "node",
      "args": ["C:/path/to/zero-vector-MCP/MCP/src/index.js"],
      "env": {
        "ZERO_VECTOR_BASE_URL": "http://localhost:3000",
        "ZERO_VECTOR_API_KEY": "your_zero_vector_2_api_key",
        "ZERO_VECTOR_V3_BASE_URL": "http://localhost:3001",
        "ZERO_VECTOR_V3_API_KEY": "your_zero_vector_3_api_key"
      }
    }
  }
}

🛠️ Development

Project Structure

zero-vector-MCP/
├── zero-vector/                 # Vector database server (v2)
│   ├── server/                  # Node.js backend
│   │   ├── src/                 # Source code
│   │   ├── scripts/             # Setup scripts
│   │   ├── data/                # Database files
│   │   └── README.md            # Server documentation
│   └── README.md                # Server overview
├── zero-vector-3/               # LangGraph workflow server (v3)
│   ├── server/                  # Node.js backend
│   │   ├── src/                 # Source code
│   │   │   ├── agents/          # LangGraph agents
│   │   │   ├── graphs/          # Workflow graphs
│   │   │   ├── services/        # Core services
│   │   │   └── state/           # State management
│   │   ├── scripts/             # Setup scripts
│   │   └── README.md            # v3 documentation
│   └── README.md                # v3 overview
├── MCP/                         # Model Context Protocol server
│   ├── src/                     # MCP server source
│   │   ├── tools/               # MCP tool implementations
│   │   │   ├── workflows.js     # NEW: Workflow tools
│   │   │   ├── personas.js      # Persona management
│   │   │   ├── memories.js      # Memory operations
│   │   │   ├── graph.js         # Graph operations
│   │   │   └── utilities.js     # System utilities
│   │   └── utils/               # Utilities
│   ├── .env.example             # Environment template
│   └── README.md                # MCP documentation
├── DOCS/                        # Internal documentation
└── README.md                    # This file

Development Setup

# Start Zero-Vector v2 server in development mode
cd zero-vector/server
npm run dev  # Port 3000

# Start Zero-Vector v3 server in development mode (new terminal)
cd zero-vector-3/server
npm run dev  # Port 3001

# Start MCP server in development mode (new terminal)
cd MCP
npm run dev

# Run tests
npm test

Environment Configuration

Zero-Vector v2 Server:

NODE_ENV=development
PORT=3000
MAX_MEMORY_MB=2048
DEFAULT_DIMENSIONS=1536
LOG_LEVEL=info

Zero-Vector v3 Server:

NODE_ENV=development
PORT=3001
POSTGRES_URL=postgresql://localhost:5432/zerovector3
REDIS_URL=redis://localhost:6379/0
LANGSMITH_TRACING=true
OPENAI_API_KEY=your_openai_key
LOG_LEVEL=info

MCP Server:

# v2 Server Configuration
ZERO_VECTOR_BASE_URL=http://localhost:3000
ZERO_VECTOR_API_KEY=your_zero_vector_2_api_key

# v3 Server Configuration
ZERO_VECTOR_V3_BASE_URL=http://localhost:3001
ZERO_VECTOR_V3_API_KEY=your_zero_vector_3_api_key

# MCP Configuration
MCP_SERVER_NAME=zero-vector-mcp-v3
LOG_LEVEL=info

📊 Performance Characteristics

Vector Storage (v2 System)

  • Vector Storage: ~6MB per 1000 vectors (1536 dimensions)
  • Search Performance: <50ms for 10,000+ vector corpus
  • Memory Efficiency: 99.9% utilization of allocated buffer space
  • Throughput: 1000+ vectors/second insertion rate
  • Capacity: 349,525 vectors in 2GB configuration

Workflow Performance (v3 System)

  • Workflow Execution: <2s for standard conversations
  • Multi-Step Reasoning: <10s for complex reasoning chains
  • Memory Integration: <500ms for hybrid memory retrieval
  • Approval Processing: <1s for human approval workflows
  • Cache Performance: 95%+ cache hit ratio for repeated operations

🔒 Security Features

  • Authentication: API key-based authentication with secure generation
  • Authorization: Role-based access control with granular permissions
  • Rate Limiting: Multiple rate limiting layers (global, per-key, per-endpoint)
  • Input Validation: Comprehensive request validation and sanitization
  • Security Headers: Helmet.js implementation with CSP policies
  • Audit Logging: Complete audit trail for all operations
  • Multi-Server Security: Coordinated security across v2 and v3 systems
  • Workflow Approval: Human-in-the-loop security for sensitive operations

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests for new functionality
  5. Commit your changes (git commit -m 'Add amazing feature')
  6. Push to the branch (git push origin feature/amazing-feature)
  7. Open a Pull Request

Development Guidelines

  • Follow existing code style and patterns
  • Add comprehensive tests for new features
  • Update documentation for any API changes
  • Ensure all tests pass before submitting PR
  • Include performance considerations for vector operations
  • Test workflow integrations thoroughly
  • Consider human-approval scenarios for new features

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🆘 Support

Documentation

Troubleshooting

Connection Issues:

# Check Zero-Vector v2 server health
curl http://localhost:3000/health

# Check Zero-Vector v3 server health
curl http://localhost:3001/health

# Test MCP server connection
cd MCP && npm run test:connection

Workflow Issues:

# Check workflow status
cd MCP && node -e "console.log('Check workflow metrics via MCP tools')"

# Review workflow logs
tail -f zero-vector-3/server/logs/combined.log

Common Issues:

  • Ensure Node.js 18+ is installed
  • Verify API key configuration in MCP .env file
  • Check both Zero-Vector servers are running before starting MCP server
  • Ensure sufficient memory allocation (4GB+ recommended for v3.0)
  • Verify PostgreSQL and Redis are running for v3 workflows

Getting Help

  • GitHub Issues: Report bugs and feature requests
  • Discussions: Ask questions and share ideas
  • Wiki: Additional documentation and examples

Zero-Vector MCP v3.0 - Production-ready hybrid vector-graph AI memory system with advanced LangGraph workflow orchestration and multi-agent intelligence

Related in Development - Secure MCP Servers

ServerSummaryActions
MCP Server for iOS SimulatorView
HeyBeautyHeyBeauty Virtual TryOnView
Togello MCP ServerThis server implements the Model Context Protocol (MCP) for managing context in applications.View
PyPI Query MCP ServerView
Laravel Docsformerly Laravel Docs MCP ServerView
Chrome DevTools MCP ServerView