llm-mcp

A Ruby gem that exposes Large Language Models (LLMs) via the Model Context Protocol (MCP), enabling seamless integration of AI capabilities into your development workflow.

Overview

llm-mcp creates an MCP server that provides standardized access to various LLM providers (OpenAI, Google Gemini, and OpenAI-compatible APIs) while supporting advanced features like session management, conversation persistence, and integration with external MCP tools.

Key Features

  • 🤖 Multi-Provider Support: Works with OpenAI, Google Gemini, and any OpenAI-compatible API
  • 💬 Session Management: Persist conversations across server restarts
  • 🔧 MCP Tool Integration: Connect to external MCP servers and use their tools within LLM conversations
  • 📝 Comprehensive Logging: JSON-formatted logs for debugging and analysis
  • 🔌 Extensible Architecture: Easy to add new providers and customize behavior
  • 🚀 Built on FastMCP: Leverages the fast and efficient MCP server framework

Installation

Add this line to your application's Gemfile:

gem 'llm-mcp'

And then execute:

$ bundle install

Or install it yourself as:

$ gem install llm-mcp

Configuration

Environment Variables

Set up your API keys based on the provider you want to use:

# For OpenAI
export OPENAI_API_KEY="your-openai-api-key"

# For Google Gemini
export GEMINI_API_KEY="your-gemini-api-key"
# or
export GOOGLE_API_KEY="your-google-api-key"

Usage

Basic Usage

Start an MCP server that exposes an LLM:

# Using OpenAI
llm-mcp mcp-serve --provider openai --model gpt-4

# Using Google Gemini
llm-mcp mcp-serve --provider google --model gemini-1.5-flash

# Using a custom OpenAI-compatible API
llm-mcp mcp-serve --provider openai --model llama-3.1-8b --base-url https://api.groq.com/openai/v1

Advanced Options

llm-mcp mcp-serve \
  --provider openai \
  --model gpt-4 \
  --verbose \                           # Enable verbose logging
  --json-log-path logs/llm.json \      # Log to JSON file
  --session-id my-project \             # Resume a specific session
  --session-path ~/my-sessions \        # Custom session storage location
  --append-system-prompt "You are a Ruby expert" \  # Add to system prompt
  --skip-model-validation              # Skip model name validation

Connecting to External MCP Servers

llm-mcp can connect to other MCP servers, allowing the LLM to use their tools:

  1. Create an MCP configuration file (e.g., ~/.mcp/config.json):
{
  "mcpServers": {
    "filesystem": {
      "command": "npx",
      "args": ["@modelcontextprotocol/server-filesystem", "/tmp"]
    },
    "github": {
      "command": "mcp-github",
      "env": {
        "GITHUB_TOKEN": "your-github-token"
      }
    },
    "http-api": {
      "url": "https://api.example.com/mcp/sse",
      "transport": "sse",
      "headers": {
        "Authorization": "Bearer your-token"
      }
    }
  }
}
  1. Start llm-mcp with the configuration:
llm-mcp mcp-serve \
  --provider openai \
  --model gpt-4 \
  --mcp-config ~/.mcp/config.json

Now the LLM can use tools from the connected MCP servers in its responses!

MCP Tools Exposed

task

Send a request to the LLM and get a response.

Parameters:

  • prompt (required): The message or question for the LLM
  • temperature (optional): Control randomness (0.0-2.0, default: 0.7)
  • max_tokens (optional): Maximum response length

Example Request:

{
  "method": "tools/call",
  "params": {
    "name": "task",
    "arguments": {
      "prompt": "Explain the concept of dependency injection",
      "temperature": 0.7,
      "max_tokens": 500
    }
  }
}

reset_session

Clear the conversation history and start fresh.

Example Request:

{
  "method": "tools/call",
  "params": {
    "name": "reset_session",
    "arguments": {}
  }
}

Session Management

Sessions automatically persist conversations to disk, allowing you to:

  • Resume previous conversations
  • Maintain context across server restarts
  • Track token usage over time

Sessions are stored in ~/.llm-mcp/sessions/ by default, with each session saved as a JSON file.

Session Files

Session files contain:

  • Message history (user, assistant, and system messages)
  • Timestamps for each interaction
  • Token usage statistics
  • Session metadata

Logging

Enable JSON logging for comprehensive debugging:

llm-mcp mcp-serve \
  --provider openai \
  --model gpt-4 \
  --json-log-path logs/llm.json \
  --verbose

Logs include:

  • All requests and responses
  • Tool calls and their results
  • Session operations
  • Error messages and stack traces

Integration Examples

Using with Claude Desktop

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "llm-mcp": {
      "command": "llm-mcp",
      "args": ["mcp-serve", "--provider", "openai", "--model", "gpt-4"],
      "env": {
        "OPENAI_API_KEY": "your-api-key"
      }
    }
  }
}

Using with mcp-client

require 'mcp-client'

client = MCP::Client.new
client.connect_stdio('llm-mcp', 'mcp-serve', '--provider', 'openai', '--model', 'gpt-4')

# Use the task tool
response = client.call_tool('task', {
  prompt: "Write a haiku about Ruby programming",
  temperature: 0.9
})

puts response.content

Combining Multiple MCP Servers

Create a powerful AI assistant by combining llm-mcp with other MCP servers:

{
  "mcpServers": {
    "llm": {
      "command": "llm-mcp",
      "args": ["mcp-serve", "--provider", "openai", "--model", "gpt-4", "--mcp-config", "mcp-tools.json"]
    },
    "filesystem": {
      "command": "mcp-filesystem",
      "args": ["/project"]
    },
    "git": {
      "command": "mcp-git"
    }
  }
}

Development

After checking out the repo, run bin/setup to install dependencies. Then, run rake test to run the tests.

# Install dependencies
bundle install

# Run tests
bundle exec rake test

# Run linter
bundle exec rubocop -A

# Install gem locally
bundle exec rake install

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/parruda/llm-mcp.

License

The gem is available as open source under the terms of the MIT License.

Related in Development - Secure MCP Servers

ServerSummaryActions
MCP Yeoman ServerView
Swift MCP Server - JavaScript VersionNo documentation available.View
Bevy BRP MCPThis repository is archived and no longer maintained.View
GitLab MR & Confluence LinkerThis project provides an MCP (Model Control Protocol) server that integrates GitLab merge request an...View
UUIDv7 GeneratorA Model Context Protocol (MCP) server for generating UUIDv7 strings.View
Fluent (ServiceNow SDK)A stdio MCP Server for Fluent (ServiceNow SDK), a TypeScript-based declarative domain-specific langu...View